Algebraic Constraint for Preserving Convexity of Planar Homography


Gaku Nakano


This paper proposes a new algebraic constraint for the planar homography estimation to ensure transformations between two convex quadrilaterals. The new constraint is derived by utilizing a projective invariance of an ellipse, i.e. an ellipse is projected as an ellipse in other views under a physically plausible homography. The invariance is expressed by a quadratic inequality about a homography matrix, therefore, the quadratic constraint can be incorporated with a direct linear method that can be solved as a generalized eigenvalue problem. We demonstrate by experiments that an M-estimator with the new constraint is stable and robust against image noise and outliers compared to RANSAC family with the standard 4-point DLT method.

PDF (protected)

  Important Dates

All deadlines are 23:59 Pacific Time (PT). No extensions will be granted.

Paper registration July 23 30, 2021
Paper submission July 30, 2021
Supplementary August 8, 2021
Tutorial submission August 15, 2021
Tutorial notification August 31, 2021
Rebuttal period September 16-22, 2021
Paper notification October 1, 2021
Camera ready October 15, 2021
Demo submission July 30 Nov 15, 2021
Demo notification Oct 1 Nov 19, 2021
Tutorial November 30, 2021
Main conference December 1-3, 2021