Leveraging Spatial and Photometric Context for Calibrated Non-Lambertian Photometric Stereo

Authors:

David Honzátko, Engin Türetken, Pascal Fua and L. Andrea Dunbar

Abstract:

The problem of estimating a surface shape from its observed reflectance properties still remains a challenging task in computer vision. The presence of global illumination effects such as inter-reflections or cast shadows makes the task particularly difficult for non-convex real-world surfaces. State-of-the-art methods for calibrated photometric stereo address these issues using convolutional neural networks (CNNs) that primarily aim to capture either the spatial context among adjacent pixels or the photometric one formed by illuminating a sample from adjacent directions. In this paper, we bridge these two objectives and introduce an efficient fully-convolutional architecture that can leverage both spatial and photometric context simultaneously. In contrast to existing approaches that rely on standard 2D CNNs and regress directly to surface normals, we argue that using separable 4D convolutions and regressing to 2D Gaussian heat-maps severely reduces the size of the network and leads to more stable predictions. Our experimental results on a real-world photometric stereo benchmark show that the proposed approach outperforms the existing published methods in accuracy. We will release our source code upon acceptance.

PDF (protected)


  Important Dates

All deadlines are 23:59 Pacific Time (PT). No extensions will be granted.

Paper registration July 23 30, 2021
Paper submission July 30, 2021
Supplementary August 8, 2021
Tutorial submission August 15, 2021
Tutorial notification August 31, 2021
Rebuttal period September 16-22, 2021
Paper notification October 1, 2021
Camera ready October 15, 2021
Demo submission July 30 Nov 15, 2021
Demo notification Oct 1 Nov 19, 2021
Tutorial November 30, 2021
Main conference December 1-3, 2021

  Sponsors