EgoGlass: Egocentric-View Human Pose Estimation from an Eyeglass Frame

Authors:

Dongxu Zhao, Zhen Wei, Jisan Mahmud and Jan-Michael Frahm

Abstract:

We present a new approach, EgoGlass, towards egocentric motion-capture and human pose estimation. EgoGlassis a lightweight eyeglass frame with two cameras mounted on it. Our first contribution is a new egocentric motion-capture device that adds next to no extra burden on the user and a dataset of real people doing a diverse set of actions captured by EgoGlass. Second, we propose to utilize body part information for human pose detection - to help tackle the problems of limited body coverage and self-occlusions caused by the egocentric viewpoint and cameras’ proximity to the human body. We also propose a concept of pseudo-limb mask as an alternative for segmentation mask when ground truth segmentation mask is absent for egocentric images with real subject. We demonstrate that our method achieves better results than the counterpart method without body part information on our dataset. We also test our method on two existing egocentric datasets: xR-EgoPose and EgoCap. Our method achieves state-of-the-art results on xR-EgoPose and is on par with existing method for Ego-Cap without requiring temporal information or personalization for each individual user.

PDF (protected)


  Important Dates

All deadlines are 23:59 Pacific Time (PT). No extensions will be granted.

Paper registration July 23 30, 2021
Paper submission July 30, 2021
Supplementary August 8, 2021
Tutorial submission August 15, 2021
Tutorial notification August 31, 2021
Rebuttal period September 16-22, 2021
Paper notification October 1, 2021
Camera ready October 15, 2021
Demo submission July 30 Nov 15, 2021
Demo notification Oct 1 Nov 19, 2021
Tutorial November 30, 2021
Main conference December 1-3, 2021

  Sponsors